Skip to main content

cooling fan

Computer fan


A small PC fan (30 mm, 2.56 CFM with 8,000 rpm) lying on top of a big one (250 mm, 124.71 CFM with 800 rpm)
computer fan is any fan inside, or attached to, a computer case used for active cooling, and may refer to fans that draw cooler air into the case from the outside, expel warm air from inside, or move air across a heat sink to cool a particular component. Generally these are found in axial and sometimescentrifugal forms. The former is sometimes called a "muffin" fan, while the latter may be called a "biscuit blower" in some product literature.
As processorsgraphics cardsRAM and other components in computers have increased in speed and power consumption, the amount of heat produced by these components as a side-effect of normal operation has also increased. These components need to be kept within a specified temperature range to prevent overheating, instability, malfunction and damage leading to a shortened component lifespan.
While in earlier personal computers it was possible to cool most components using natural convection (passive cooling), many modern components require more effective active cooling. To cool these components, fans are used to move heated air away from the components and draw cooler air over them. Fans attached to components are usually used in combination with a heatsink to increase the area of heated surface in contact with the air, thereby improving the efficiency of cooling.
In the IBM compatible PC market, the computer's power supply unit (PSU) almost always uses an exhaust fan to expel warm air from the PSU. Active cooling on CPUs started to appear on the Intel 80486, and by 1997 was standard on all desktop processors.[1] Chassis or case fans, usually one exhaust fan to expel heated air from the rear and optionally an intake fan to draw cooler air in through the front, became common with the arrival of the Pentium 4 in late 2000.[1] A third vent fan in the side of the PC, often located over the CPU, is also common. The graphics processing unit (GPU) on many modern graphics cards also requires a heatsink and fan. In some cases, the northbridge chip on the motherboard has another fan and heatsink. Other components such as the hard drives and RAM may also be actively cooled, though as of 2012 this remains relatively unusual. It is not uncommon to find five or more fans in a modern PC.

Cooling fan application[edit]

Case mount[edit]

Standard case fans are 80, 92, 120, 140, 200 and 230 mm in width and length. As case fans are often the most readily visible form of cooling on a PC, decorative fans are widely available and may be lit with LEDs, made of UV-reactive plastic, and covered with decorative grilles. Decorative fans and accessories are popular with case moddersAir filters are often used over intake fans, to prevent dust from entering the case and clogging up the internal components. Heatsinks are especially vulnerable to being clogged up, as the insulating effect of the dust will rapidly degrade the heatsink's ability to dissipate heat.
While the power supply (PSU) contains a fan with few if any exceptions, it is not to be used for case ventilation. The hotter the PSU's intake air is, the hotter the PSU gets. As the PSU temperature rises, the conductivity of its internal components decrease. Decreased conductivity means that the PSU will convert more of the input electric energy into thermal energy (heat). This cycle of increasing temperature and decreased efficiency continues until the PSU either overheats, or its cooling fan is spinning fast enough to keep the PSU adequately supplied with comparatively cool air. The PSU is mainly bottom-mounted in modern PCs, having its own dedicated intake and exhaust vents, preferably with a dust filter in its intake vent.

CPU fan[edit]

Used to cool the CPU (central processing unit) heatsink. Effective cooling of a concentrated heat source such as a large-scale integrated circuit requires a heatsink, which may be cooled by a fan; use of a fan alone will not prevent overheating of the small chip.

Graphics card fan[edit]


PCI Express 3.0 ×16 graphics card, using two fans for cooling
Used to cool the heatsink of the graphics processing unit or the memory on graphics cards. These fans were not necessary on older cards because of their low power dissipation, but most modern graphics cards designed for 3D graphics and gaming need their own dedicated cooling fans. Some of the higher powered cards can produce more heat than the CPU (dissipating up to 289 watts[2]), so effective cooling is especially important. Since 2010, graphics cards have been released with eitheraxial fans or a centrifugal fan commonly known as a blower or squirrel cage fan.

Chipset fan[edit]

Used to cool the heatsink of the northbridge of a motherboard's chipset; this may be needed where the system bus is significantly overclocked and dissipates more power than as usual, but may otherwise be unnecessary. As more features of the chipset are integrated into the central processing unit, the role of the chipset has been reduced and the heat generation reduced also.

Other purposes[edit]

Physical characteristics[edit]

Most fans used in computers are of the axial-flow type; centrifugal and crossflow fans are sometimes used. Two important functional specifications are the airflow that can be moved, typically stated in cubic feet per minute (CFM), and static pressure. Given in decibels, the sound volume figure can be also very important for home and office computers; larger fans are generally quieter for the same CFM.
Many gamers, case modders, and enthusiasts utilize fans illuminated with colored LED lights. Multi-colored fans are also available.

Dimensions[edit]

The dimensions and mounting holes must suit the equipment that uses the fan. Square-framed fans are usually used, but round frames are also used, often so that a larger fan than the mounting holes would otherwise allow can be used (e.g., a 120 mm fan with holes for the corners of a 90 mm square fan). The width of square fans and the diameter of round ones are usually stated in millimeters. The dimension given is the outside width of the fan, not the distance between mounting holes. Common sizes include 40 mm, 60 mm, 80 mm, 92 mm, 120 mm and 140 mm, although 8 mm,[5] 17 mm,[6] 20 mm,[7] 25 mm,[8]30 mm,[9] 35 mm,[10] 38 mm,[11] 45 mm,[12] 50 mm,[13] 70 mm,[14] 250 mm[15] and 360 mm[16] sizes are also available. Heights are typically 10 mm, 25 mm or 38 mm, but this is usually not an important dimension as it does not affect mounting holes or apertures in the case.

Rotational speed[edit]

The speed of rotation (specified in revolutions per minute, RPM) together with the static pressure determine the airflow for a given fan. Where noise is an issue, larger, slower-turning fans are quieter than smaller, faster fans that can move the same airflow. Fan noise has been found to be roughly proportional to the fifth power of fan speed; halving the speed reduces the noise by about 15 dB.[17] Axial fans may rotate at speeds of up to around 19,000 rpm for smaller sizes.[18][19]
Fans may be controlled by sensors and circuits that reduce their speed when temperature is not high, leading to quieter operation, longer life, and lower power consumption than fixed-speed fans. Fan lifetimes are usually quoted under the assumption of running at maximum speed and at a fixed ambient temperature.

Air pressure and flow[edit]

Bearing types[edit]

The type of bearing used in a fan can affect its performance and noise. Most computer fans use one of the following bearing types:

Connectors[edit]

Three-pin Molex connector KK family
This Molex connector is used when connecting a fan to the motherboard or other circuit board. It is a small, thick, rectangular in-line female connector with two polarizing tabs on the outer-most edge of one long side. Pins are square and on a 0.1 inch (2.54 mm) pitch. The three pins are used for ground, +12 V power, and a tachometer signal. The Molex part number of receptacle is 22-01-3037. The Molex part number of the individual crimp contacts is 08-50-0114. The matching PCB header Molex part number is 22-23-2031.
Four-pin Molex connector KK family
This is a special variant of the Molex KK connector with four pins but with the locking/polarisation features of a three-pin connector. The additional pin is used for a pulse-width modulation signal to provide variable speed control.[22] These can be plugged into 3-pin headers, but will lose their fan speed control. The Molex part number of receptacle is 47054-1000. The Molex part number of individual crimp contacts is 08-50-0114. The Molex part number of the header is 47053-1000.
Four-pin Molex connector
This connector is used when connecting the fan directly to the power supply. It consists of two wires (yellow/12 V and black/ground) leading to and splicing into a large in-line four-pin male-to-female Molex connector. This is the same connector as used on hard drives before the SATA became standard.
Dell proprietary
This proprietary Dell connector is an expansion of a simple three-pin female IC connector by adding two tabs to the middle of the connector on one side and a lock-tab on the other side. The size and spacing of the pin sockets is identical to a standard three-pin female IC connector and three-pin Molex connector. Some models have the wiring of the white wire (speed sensor) in the middle, whereas the standard 3-pin Molex connector requires the white wire as pin #3, thus compatibility issues may exist.


click on any text to go to homepage

Comments

Popular posts from this blog

QBasic and its history

QBasic Not to be confused with  Quick Basic . QBasic Paradigm Procedural Developer Microsoft First appeared 1991 ; 25 years ago OS MS-DOS ,  Windows 95 ,  Windows 98 ,  Windows Me ,  PC DOS ,  OS/2 , eComStation License Part of the operating system (a variety of  closed-source  licenses) Website www .microsoft .com Influenced by QuickBASIC ,  GW-BASIC Influenced QB64 ,  Small Basic QBasic  ( Microsoft  Quick Beginners All purpose Symbolic Instruction Code ) is an  IDE  and  interpreter  for a variety of the  BASIC programming language  which is based on  QuickBASIC . Code entered into the IDE is compiled to an intermediate representation , and this  IR  is immediately interpreted on demand within the IDE. [1]  It can run under nearly all versions of  DOS  and  Windows , or through  DOSBox / DOSEMU , on  Linux  and  FreeBSD . [2]  For its time, QBasic provided a state-of-the-art IDE, including a  debugger  with features such as on-the-fly expression evaluation and

Top 10 keyboard shortcuts everyone should know

Top 10 keyboard shortcuts everyone should know Using keyboard shortcuts can greatly increase your productivity, reduce repetitive strain, and help keep you focused. For example, to copy text, you can highlight text and press the Ctrl + C shortcut. The shortcut is faster than moving your hands from the keyboard, highlighting with the mouse, choosing copy from the file menu, and then returning to the keyboard. Below are the top 10 keyboard shortcuts we recommend everyone memorize and use. Ctrl + C or Ctrl + Insert and Ctrl + X Both  Ctrl + C  and  Ctrl +  Insert  will  copy  the  highlighted  text or selected item. If you want to  cut  instead of copy press  Ctrl + X . Apple  computer users can substitute the Ctrl key for the  command (cmd) key  on their computers. For example, pressing  Cmd + C  copies the highlighted text. Ctrl + V or Shift + Insert Both the  Ctrl + V  and  Shift + Insert  will  paste  the text or object that's in the clipboard . For Apple computer

computer network

A network may refer to any of the following: 1. A network is a collection of computers, servers, mainframes, network devices, peripherals, or other devices connected to one another to allow the sharing of data. An excellent example of a network is the Internet, which connects millions of people all over the world. Below is an example image of a home network with multiple computers and other network devices all connected to each other and the Internet. Computer network Examples of network devices *Desktop computers, laptops, mainframes, and servers *Consoles and thin clients *Firewalls *Bridges *Repeaters *Network Interface cards *Switches, hubs, modems, and routers *Smartphones and tablets *Webcams *Network topologies and types of networks The term network topology describes the relationship of connected devices in terms of a geometric graph. Devices are represented as vertices, and their connections are represented as edges on the graph. It describes